

SUSTAINABLE LONG-TERM PROTECTION OF REINFORCED CONCRETE PORT STRUCTURES

Andrew Dickinson

Vector Corrosion Technologies

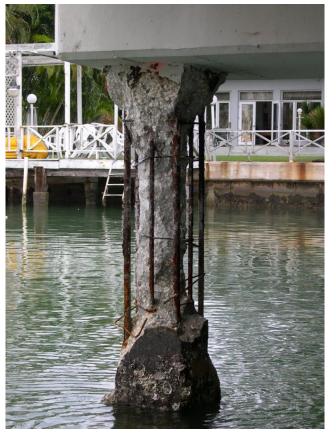
Concrete Preservation and Sustainability

It is estimated that up to 40% of solid waste derives from construction and demolition.

For every 10,000 m3 of concrete preserved :

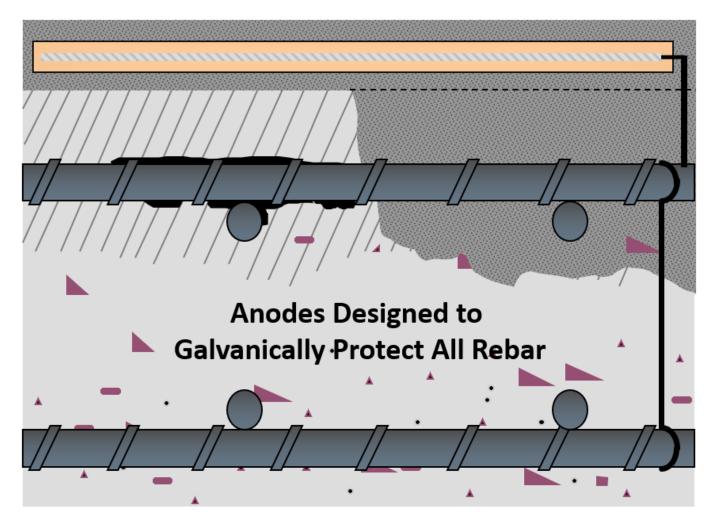
- 24,000 mt of rubble is kept from the landfill and a similar amount of natural resources are conserved.
- Conserves enough potable water to fulfill the daily needs of 3,000 people
- Avoids carbon dioxide generation equivalent to the annual emission of 1,600 people

Corrosion Preservation Economic Impact


A 2002 federal study, initiated by NACE stated that

Corrosion Costs and Preventive Strategies in the United States, backed by the U.S. Federal Highway Administration, estimated annual costs at the time of **\$276 billion.**

The cost of corrosion-related maintenance of infrastructure (e.g. Ports and Bridges) in Australia is currently estimated to be **\$A8 billion**. (Sept 2020, ACA)


Options to extend the life of the asset

- Do nothing regular monitoring
- Localised spalling repairs
- Discreet anodes in patch repairs to extend the repairs life
- Distributed Galvanic Cathodic protection
- Impressed Current Cathodic Protection (ICCP)
- Two stage protection ICCP and Galvanic cathodic protection combined
- Chloride Extraction
- Protection Coatings eg Silanes

* Options selection all depend on condition of asset, life extension desired and budget available

Installed Distributed Anode

Table 2: Practical Galvanic Series in Seawater

Metal	Volts vs. Cu-CuSO ₄					
Active or Anodic End						
Magnesium	-1.60 to -1.75					
Zinc	-1.10					
Aluminum	-1.05					
Clean Carbon Steel	-0.50 to -0.80					
Rusted Carbon Steel	-0.20 to -0.50					
Cast/Ductile Iron	-0.50					
Lead	-0.50					
Steel in Concrete	-0.20					
Copper	-0.20					
High Silicon Iron	-0.20					
Carbon, Graphite	+0.30					
Noble or Cathodic End						

Applications for Distributed Protection

- Joint Repairs
- Large beam repairs
- Deck widening or extensions (new to old joint interfaces)
- Concrete overbuilds such as headstocks and pile caps
- Galvanic cathodic protection jackets for piles

North Otter Creek Bridge, Ontario

- Pre-cast anode DAS anodes 12mm x 50mm 2.4M length installed at 300mm spacings
- A carbon fibre mesh was used to prevent or reduce shrinkage cracks in the concrete overlay.
- Each junction box contained a system on/off switch and a precision resistor. This arrangement and the installed MEP allowed the anode current to be measured and the current density generated by the anodes

Completed Project

Long Term Monitoring since 2003

Time (days)	Temp	Current Density	Depolarization	Time (days)	Temp	Current Density	Depolarization
	(oC)	(mA/m2)	(mV)		(oC)	(mA/m2)	(mV)
13	7	6.5	273	1299	-3	1	20
33	10	6.1	238	1573	0	7.6	32
61	11	3.5	57	1649	3	1.1	31
222	20	3.8	271	1755	20	1.6	42
258	23	2.6	220	2000	-5	0.65	27
267	21	2.5	260	3174	22	1.8	27
336	23	1.7	211	3646	23	1.13	128
426	8	1.4	230	4300	25	1.08	43
486	-20	0.55	142	5140	23	0.6	20
571	3	1.4	293	5383	20	0.57	18
676	20	1.8	313	5770	23	0.66	21
766	8	1.3	284	6150	23	0.23	18
859	-7	0.8	167	6554	22	0.59	17
942	10	1.4	330	6825	24	0.53	14
1165	7	1.24	281	7239	28	0.58	16
				Average	13.0667	1.877	226.

- The values were averaged to determine a polarization value for the system.
- All embedded instrumentation was backfilled with concrete containing the typical amount of chloride found in the deck (at the reinforcement level).
- Except for winter months when the bridge deck froze and current and corrosion potential readings were not reliable,
- Sufficient current was being supplied by the anodes to meet the 100 mV criteria as per AS2832.5 & NACE criteria
- Exceptions are readings in winter when bridge was frozen

Port of Canaveral North Cargo Piers

North Cargo Piers Restoration, Port of Canaveral, Cape Canaveral, Florida

• 4 cargo piers

- Bulk cargo: cement, slag, salt, lumber, automobiles
- 626 meters of docking space with 11,000 m2 total
- Major restoration with 20-year design life
- April 2005 to December 2006

Corrosion Induced Damage

Scope of Repair works

- Pile Caps
- Prestressed Piles
- Precast Deck Units

Pile Cap Repair

- 2,000 meters of pile cap repair
- Remove bottom 20 cm
- Install distributed strip anodes
 - 4 cm x 4 cm x 2.5 m
- Form and Pour Repair

Distributed Anode Strips for Pile Caps

Pile Repair

- 668 Prestressed Piles
 - 450 mm square
- Remove damaged concrete
- Install Galvanic Jackets
 - 56 cm and 71 cm square
 - 2 to 10 meters in length
 - Stay-in-place FRP Form
 - 7.8 kg/m2 zinc mesh anodes
 - 22 kg bulk zinc anodes
- Concrete is pumped into ports from the bottom up

North Cargo Piers Sustainability outcomes

- 6651m3 of reinforced concrete were preserved with concrete repair and galvanic cathodic protection.
- 15,952 tons of solid waste avoided
- 15,464 tones of natural resources were not used including cement, aggregate and steel.
- 814,748 Litres of potable water were not used, enough for the daily needs of 2,201 people
- 20,744 GJ of heat generation was avoided, enough to boil 26 Olympic-size pools
- 18,848 pounds of NO2 and SO2 pollution were avoided
- 4,310 tons of CO2 production was prevented

CONCRETE PRESERVATION IMPACT STATEMENT NORTH CARGO PIERS REHABILITATION PORT CANAVERAL, FLORIDA, USA

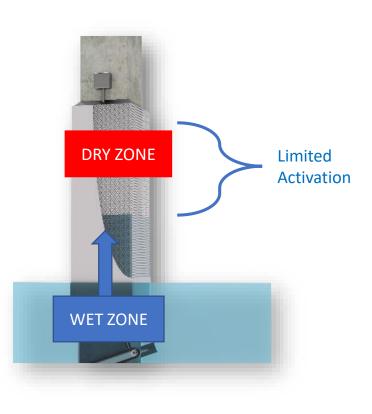
preserving and service life of the

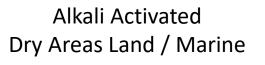
> 17128 of ne will be cons cement, ago

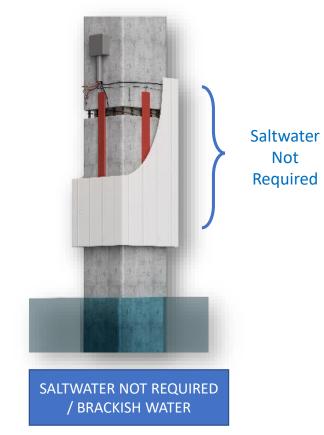
220120 gallo - enough for 2201 people 20746 GL of

enough to be pools - will b

10848 poun pollution is a 4756 tons o the equivale emissions o

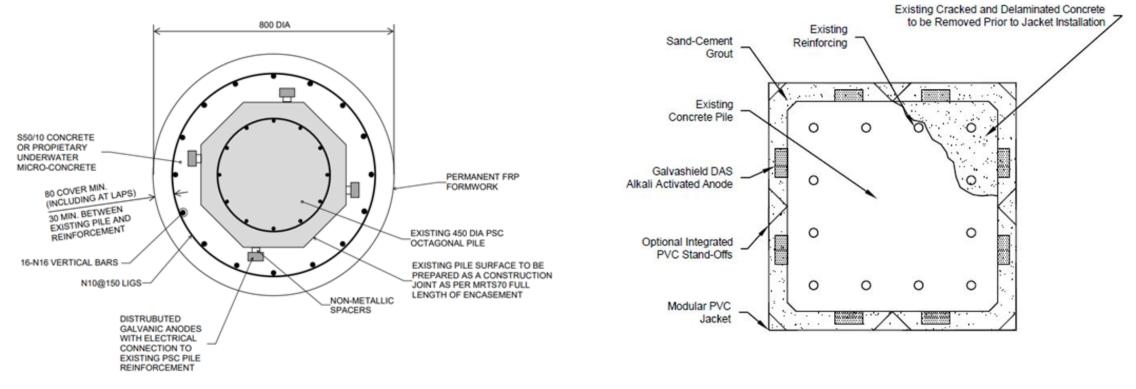

prevented


formation provided, extending the is structure will wing benefits:	Inputs Volume of concrete to be preserved	8700	yd3	6651	m3			
of solid waste will be andfills.	Outputs							
w natural resources erved, including regate and steel.	Emissions							
ons of potable water the daily needs of - will be conserved.	Concrete C02 Steel C02	2290 2466	US tons US tons	2075 2235	metric tons metric tons			
heat generation - bil 26 Olympic-size e conserved. ds of NO _X and SO ₂	Total Carbon Dioxide Equivalent to annual CO2 emission of:	4756 1081	US tons people	4310 1078	metric tons people			
voided. CO ₂ production -	NOx (as NO2) SO2	8480 2368	lbs	3782 1056	kg kg			
nt to the annual 1081 people - is	Total Pollutants	952429	lbs	431492	kg			
	Waste Generation							
	Solid Waste (Rubble)	17618	US tons	15962	metric tons			
	Energy (heat generation from cement production, cement hydration, and steel production)	20746	GJ	19691	GJ			
	Equivalent energy to boiling	26	Olympic Pools	24	Olympic Pools			
	Natural Resources Required							
	Fine aggregate	4581	US Tons	4150	metric tons			
	Coarse aggregate	7223	US Tons	6545	metric tons			
	Cement	3915	US Tons	3492	metric tons			
	Steel	1409	US Tons	1277	metric tons			
	Total tons	17128	US Tons	15464	metric tons			
	Potable Water	220120	gal	814748	liters			
	Equiv. daily water usage for:	2201	people	2037	people			
l								



Jacket Evolution

1st Gen Tidal (Mesh)



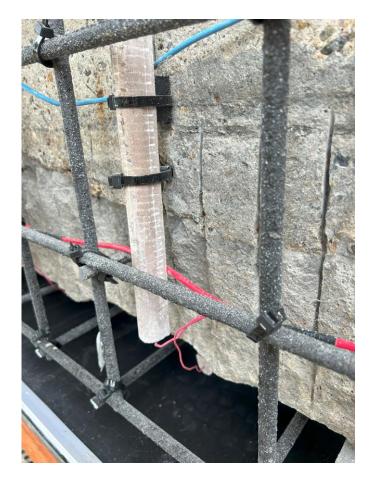
Alkali Activated Anodes used in:

- Saltwater
- Brackish water
- Fresh water and
- Dry land applications.

Typical Layouts

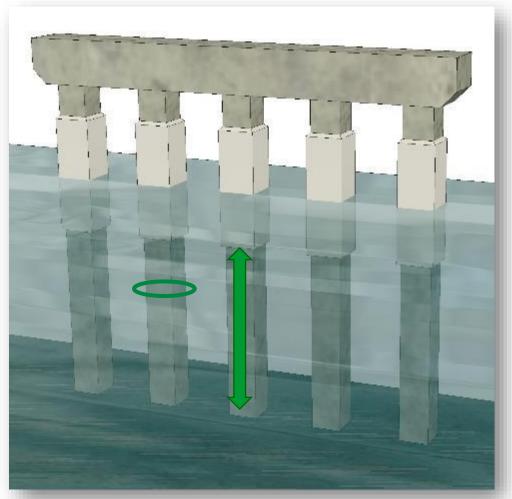
PILE ENCASEMENT - TYPICAL SECTION

Pile Protection with Marine DAS HMAS Platypus (2012)



Applications on pile caps in overbuilds

M Ali, H. Madrio, S Salek 2023 "Case Study of Sacrificial Anode Cathodic Protection with Concrete Encasement" 2023, ACA conference, Perth



Bulk Anode Underwater

Design Considerations?

- Can a different alloy be utilized as a bulk anode
- What size of anode should be used?
- Considerations in design
 - Continuity of piles
 - Condition of piles
 - Spacing are piles in close proximity?
 - Amount of steel to protect
 - Design life required

Bulk Water Anode

Environmental Concerns?

Zinc Toxicity

- Zinc is a heavy metal, but is also an important nutrient
- Toxicity develops when you have too much in the environment
 - Different species metabolize zinc differently,
 - Toxic concentration varies by species
- Excessive concentrations buildup in ports, shipyards, near point sources like foundries

EPA Limits

- Acute: saltwater exposure 170 $\mu\text{g/L}$ max; Varies with hardness in fresh water
- Chronic: saltwater exposure for 24 hr. 58 μ g/L; freshwater exposure for 24 hr., 47 μ g/L
- Aluminum not toxic, not regulated

Bulk Anode Selection

Conclusions

- Alkali-activated distributed anodes have been used on reinforced concrete structures throughout North America for 20 years and in Australia for nearly 15 years.
- The anodes have been used in a variety of environments de-icing salts to marine exposure and have been installed in nearly all states in Australia
- They do not require an external power source to energize the system or ongoing means it can provide a safer, easier and potentially more cost-effective option
- No ongoing maintenance or monitoring commitment for the Port owner
- Long term monitoring has demonstrated that the anode systems can be designed to satisfy AS2832.5 & NACE 0216-2023 cathodic protection criteria while providing low maintenance cathodic protection for up to 30 years.
- Galvanic cathodic protection systems can provide a sustainable, low maintenance and cost-effective option for asset owners to extend the service life of corroding reinforced concrete structures compared to replacement.

Thank You – Questions?

Andrew Dickinson andrewd@vector-corrosion.com www.vector-corrosion.com